High formation of secondary organic aerosol from the photo-oxidation of toluene
نویسندگان
چکیده
Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA) precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photooxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental conditions: yields are higher under higher UV intensity, under low-NOx conditions and at lower temperatures. The extent of oxidation of the aerosol also varies with experimental conditions, consistent with ongoing, progressive photochemical aging of the toluene SOA. Measurements using a thermodenuder system suggest that the aerosol formed under highand low-NOx conditions is semi-volatile. These results suggest that SOA formation from toluene depends strongly on ambient conditions. An approximate parameterization is proposed for use in air-quality models until a more thorough treatment accounting for the dynamic nature of this system becomes available.
منابع مشابه
Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity
Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. ...
متن کاملA kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the Uni...
متن کاملSelected Studies: A Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from Toluene oxidation in the presence of NOx and Natural Sunlight
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed and aerosol phase chemistry that includes nucleation, gas-particle partitioning and particle phase reactions as well as the gasphase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experiments obtained from a Universit...
متن کاملInsights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation.
Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. S...
متن کاملPhoto-oxidation of Isoprene with Organic Seed: Estimates of Aerosol Size Distributions Evolution and Formation Rates
Indoor smog chamber experiments have been conducted to investigate the dynamics of secondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. The dependence of the size distributions of SOA on both the level of pre-existing particles generated in situ from the photo-oxidation of trace hydrocarbons of indoor atmosphere and the...
متن کامل